If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^2=-Y^2+20
We move all terms to the left:
^2-(-Y^2+20)=0
We add all the numbers together, and all the variables
-(-Y^2+20)=0
We get rid of parentheses
Y^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| 8c+4-5c=32 | | -8-3(1+4k)=-33 | | 30+8z=-5(3z+9) | | 21=-9+5(b+8) | | -4(8d-3)=-24-2d | | 4a-6-4a=-9 | | 5r÷12+8=44 | | -q+4=q | | -8+(-x)=x+(-4) | | 4(8+7f)=-29 | | -8+(x)=x+(-4) | | 7x-7x=-3 | | -9v+8v=-24 | | (-4x-6)+(6x+1)=-13 | | 2x+12=10x-8 | | 93-45=2+x+35 | | 26=-2x-9x | | 1/3x3+4=Y | | 14+15=x+17 | | 48-12=46-x | | 2=17+3e | | 52-8=x-29 | | 9o+6=15. | | 45+16+17=x+36 | | x+3=71-44 | | 7=(15x-6) | | 66-27=x-37 | | 61-11=x+13 | | 6.4v=32 | | 56=7/4c | | 121-x=49+10+26 | | 10g+8=18. |